Вариант № 35196

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 601
i

Среди чисел  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 3 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ; минус 3; минус 0,3; ко­рень из 3 вы­бе­ри­те число, про­ти­во­по­лож­ное числу 3.



2
Задание № 512
i

Ука­жи­те вер­ное ра­вен­ство:



3
Задание № 423
i

Сумма всех на­ту­раль­ных де­ли­те­лей числа 45 равна:



4
Задание № 604
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 6, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 6 минус целая часть: 6, дроб­ная часть: чис­ли­тель: 13, зна­ме­на­тель: 18 пра­вая круг­лая скоб­ка умно­жить на 4,5 минус 0,7.



5
Задание № 35
i

Если 9x минус 24=0, то 18x минус 31 равно:



6
Задание № 36
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 4 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка имеет вид:



7
Задание № 967
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.



8
Задание № 1161
i

По­сле­до­ва­тель­ность за­да­на фор­му­лой n-го члена a_n=3n минус 164. При каком зна­че­нии n впер­вые вы­пол­ня­ет­ся усло­вие S_n боль­ше 0, где Sn  — сумма пер­вых n чле­нов этой по­сле­до­ва­тель­но­сти?



9
Задание № 1036
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  32. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.



10
Задание № 220
i

Зна­че­ние вы­ра­же­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 32 конец ар­гу­мен­та : ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та равно:



11
Задание № 341
i

Най­ди­те зна­че­ние вы­ра­же­ния 240 умно­жить на дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 240 конец дроби .



12
Задание № 1039
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC8 см; 15 см; 17 см
ΔMNK4 см; 5 см; 8 см
ΔBDC3 см; 4 см; 5 см
ΔFBC7 см; 8 см; 9 см
ΔCDE5 см; 11 см; 13 см


13
Задание № 343
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 12, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 8. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.



14
Задание № 344
i

Сумма ко­ор­ди­нат точки пе­ре­се­че­ния пря­мых, за­дан­ных урав­не­ни­я­ми 5x плюс 2y= минус 4 и x плюс y=5 левая круг­лая скоб­ка 6 плюс y пра­вая круг­лая скоб­ка , равна:



15
Задание № 1312
i

Най­ди­те сумму всех на­ту­раль­ных чисел n, для ко­то­рых вы­пол­ня­ет­ся ра­вен­ство НОК(n,63)  =  63.



16
Задание № 436
i

Какая из пря­мых пе­ре­се­ка­ет гра­фик функ­ции y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x в квад­ра­те минус 2x плюс 7 в двух точ­ках?



17

Вы­чис­ли­те сумму наи­боль­ше­го от­ри­ца­тель­но­го и наи­мень­ше­го по­ло­жи­тель­но­го кор­ней урав­не­ния  ко­си­нус левая круг­лая скоб­ка 3 Пи x пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 3 Пи x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



18
Задание № 948
i

Сумма всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка 6 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 17 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant0 равна:



19
Задание № 529
i

Если в пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, а пло­щадь диа­го­наль­но­го се­че­ния равна 12, то ее объем равен ...


Ответ:

20
Задание № 200
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 21, зна­ме­на­тель: x в квад­ра­те минус 4x плюс 10 конец дроби минус x в квад­ра­те плюс 4x=6.


Ответ:

21
Задание № 111
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 10, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,6. Най­ди­те пло­щадь тре­уголь­ни­ка.


Ответ:

22
Задание № 22
i

Най­ди­те про­из­ве­де­ние всех целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 2x минус 3 пра­вая круг­лая скоб­ка \geqslant минус 1.


Ответ:

23
Задание № 983
i

Най­ди­те зна­че­ние вы­ра­же­ния 6 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 ко­рень из 2 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 ко­рень из 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 2 плюс ко­рень из 5 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та .


Ответ:

24
Задание № 294
i

Най­ди­те 4x_1 умно­жить на x_2, где x_1, x_2  — абс­цис­сы точек пе­ре­се­че­ния па­ра­бо­лы и го­ри­зон­таль­ной пря­мой (см.рис.).


Ответ:

25
Задание № 445
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 5x плюс 4= дробь: чис­ли­тель: 16, зна­ме­на­тель: x в квад­ра­те минус 9x плюс 18 конец дроби и най­ди­те сумму его кор­ней.


Ответ:

26
Задание № 206
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  ко­си­нус x=\left| дробь: чис­ли­тель: x, зна­ме­на­тель: 11 Пи конец дроби |.


Ответ:

27
Задание № 987
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния 6 синус 3x ко­си­нус 3x плюс 3 синус 6x ко­си­нус 10x=0 на про­ме­жут­ке (100°; 210°).


Ответ:

28
Задание № 598
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом 6 ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 10S.


Ответ:

29
Задание № 1019
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 10 : 3, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в шесть раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

30
Задание № 510
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 121 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 22 конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.